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CALCULATION OF THE SECOND VARIATION IN THE
PROBLEM OF THE STABILITY OF THE STEADY
MOTION OF A RIGID BODY CONTAINING A LIQUID¥}

P. CAPODANNO
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(Received 2 April 1996)

The stability of equilibrium or of steady motion of a rigid body containing a liquid is studied. A theorem due to Rumyantsev is
used to derive the sufficient condition for stability corresponding to a minimum of the variable potential energy for the transformed
rigid body. A procedure is presented for expressing the second variation of the variable potential energy as a quadratic form in
the parameters that define the position of the body. The calculations are substantially simplified for the problem of the stability
of equilibrium or unifcrm rotation around a fixed axis of a rigid body with liquid in a uniform gravitational field. Rumyantsev’s
results are derived anew. © 1997 Elsevier Science Ltd. All rights reserved.

1. AUXILIARY FORMULA

Let Q be a domain boundary bounded by a surface d€2. This domain is transformed to a nearby position €', defined
by a small displacements u of the points of 0Q2.

Let © - Q denote the domain “swept out” by the surface 9%, that is, the set of points M* defined by the
relationship OM* = OM + Ay, where M is a point of 3Q, u = MM is the displacement of M, A is a parameter, 0
< A < 1, and M and u depend, say, on curvilinear coordinates o and B defined on Q and M* depends on o, B
and A.

The difference between Q' ~ Q and (Q U Q') — (Q U Q) consists of domains which are at least three orders of
magnitude smaller than | u |.

To carry out the calculations, we refer 9Q to curvilinear coordinates o and f defined so that the vector product
M,, X M points along the normal to Q. Throughout this paper, the subscripts o, and B denote the appropriate
partial derivatives.

Let w be a sufficiently regular function whose range of definition contains both Q and Q"

By our previous remark, if we confirm ourselves to terms of order less than or equal to two relative to | u |, we
can write

[ wat= [ w(M+M)Mg, M}, M})dodBdh= | w(M)(M, xMp)- udadBdh+
' -Q Q-Q Q-Q

+ f M(grad w-u)(Mg, Mg, u)+w(M)(M, XMg +uy XxMpg)-u}dadBd\
Q'-Q

(the subscript A denotes partial differentiation with respect to A).
Observing that the domain Q' — Q may be identified with dQ x ]0, 1{ and that the area element dS on the surface
022 is ABdadp, we see that, up to terms of higher than second order in | u |

| wdt= | w(M)u,,dS+l | lgrad w-u)u, +w(u-n,))ds 11
o0 L

where we have introduced the notation

_MaxMB

AB
A=M,l, B=IMyl

1
u,=u-m, n , n1=ﬁ(MGXMB+quMB)

In particular, setting w = 1, we obtain the first and second variation of the volume Q
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Fig. 1.

| undS+—1—j (u-n)dS
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Throughout what follows, we retain the notation of [1], Chap. IV.

2. CALCULATION OF THE FIRST AND SECOND VARIATION OF THE
VARIED POTENTIAL ENERGY FOR THE STEADY MOTION OF
A RIGID BODY CONTAINING A LIQUID

Let us consider an absolutely rigid body with a simply-connected cavity of arbitrary shape containing an
incompressible homogeneous ideal liquid (see Fig. 1). The position of the body and the liquid relative to a fixed
system of coordinates O'x"x’,x’; will be defined by the coordinates of the body g, (f = 1, ..., n - 1) and the absolute
coordinates x’;, x’5, x’5 or relative coordinates x;, x,, x; of the liquid particles. éuppose that stationary constraints
imposed on the system allow the body to rotate about the x’; axis, while the given forces acting on the liquid particles
admit of force functions Uy (g;) and Uj(xy, x";,x’;) and do not produce a torque about other x’; axis. Then an energy
integral and an area integral exist for the plane orthogonal to the x’; axis, and the variable potential energy is

“g
W=—-U P Usydt
2] 1 I 2

where k, is the value of the area constant k for uniform rotation of the entire system as a single rigid body about
the x’; axis at angular velocity ®, I is the moment of inertia of the system about the x’; axis, and p is the density of
the liquid; throughout, the volume integrals are evaluated over the domain t occupied by the liquid.

The equations of steady motion are obtained from the requirement that 3% = 0 provided that the volume of
the liquid is constant up to first-order terms. Calculating 8/, we obtain the well-known equations

Kk a1 au, oU, .
=0 = o] Z2at=0 (=1, .., n-1) 21
21 aql aqj j aqj ! " ( )

for the coordinates g; of the rigid body in steady motion, and the equation

1
Emz(x{2+x§2)+U2(xl", x3, x§)=c0[m=%-]
0

of the free surface S of the liquid in steady motion. Here I, is the value of I for steady motion and the constant ¢y
is defined by the quantity of liquid in the cavity.

Let us calculate the second variation W on changing from the configuration corresponding to steady motion,
for which all the g; vanish, to a nearby configuration, We impart the displacement to the system as a single rigid
body; the free surface of the liquid occupies a position S, and we then displace the liquid to a new position (denoting
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the displacement of a point of S by u). In this problem the domain “swept out” by the surface dt bounding 7 coincides
up to infinitesimals of order at least three with the domain swept out by S; we must therefore replace oQ in (1.1)
(here 97) by S. Throughout what follows, surface integrals are evaluated over the surface S. Thus, we have

) K|ent 8l 1o 2%y
w=02n ooy =L dr-
J 2[ TR % daroa; i~ I Z iaq —*-qiq;

-%p[ﬂ' [gradU, -w)u, +Us(u-n, )]dS
Let us evaluate & and 8*7. By the previous remarks, we can write
1(qj, ©-1(0, t9)=[I(q;, To)—1(0, T9)1+[/(g;, ©)~1(g;, T)]
In the new position of the liquid as a rigid body we have, up to fourth-order terms
xt=x +Z a—'qj (x =x] +x§2.

i 94,

x2 =x|2+x%)

Consequently, we can write
8=2 -a'—.qﬁw. J=[f x*u,dS

1
521 =Ez; = a ———qiq; +p] 2 qju ds +— pﬁ [(grad x2 -u)u, + x*(u-n,)}dS

A necessary condition for W to have a minimum is 8’ = 0 for all u such that the volume of the liquid is
constant

| fu,dS = 0 in the first approximation, 2

| J(u - m;)dS = 0 in the second approximation 23)

Taking condition (22.3) into account, as well as the fact that f = ¢g on § and grad f, = -| grad f; I, since in steady
motion the liquid must be on the side of the free surface where f; > ¢,, we obtain

2
20 f al
b W——pz H qju,,dS+ 2]-; (2 qu‘f*p.]] -
1 ke a21 22U, 22U, 1 2
. =0_ + +pJ dat (q;q; +— Igrad fylu,dS 24
2,"_,' [218 aq,aqj aq‘aqj aq,aq, i4j 2pﬂ grad jolu, ( )
2 k2 2
fo——x +Up(x;, 0) [ =—Dx? +Us(x;, g;)
212 212

Note that 5°W depends on the normal component u,, of .

3. CALCULATION OF THE SECOND VARIATION OF THE
VARIED ENERGY POTENTIAL FOR THE TRANSFORMED
RIGID BODY

By a theorem due to Rumyantsev [1, Chap. IV, Sec. 4, Theorem VIII], a sufficient condition for the steady
motion to be stable may be obtained by determining the minimum of W for the configuration bounded by the
surface §’

K
21(g;, ©)

where the constant ¢ is defined by the amount of liquid in the cavity of the body corresponding to the transformed
rigid body.

‘We will show that if the point x; describes S, then the point x; + u,z; will describe S’ in the first approximation.
Indeed, in the first approximation

x'2+U2(x,~, q;j)=c
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alx(x;, q;)
Uy (x; +uyn;, qj)=U2(x,~, 0)+u, grad Uy (x;, 0)-n+Y, [—zqf—i] q9;
J J 0

2
x’z(xi+u,,n,-, qj)=x2+u,, grad x> -n+ Y [Bx J q;
J 95 Jo

On the other hand, we can write
= ——28]+...

Substituting this into the equation for §’, we obtain

o’ Kk al
c-—co=—|gradfolu,,+z [ﬁ]oqj_—g-x lz (éq_ 0qj+p./

3 - ;
J j I | j

This equation defines an expression for the component u,, which depends linearly on ¢ — ¢y and the integral J.
Multiplying by x* and integrating with respect to S, we obtain this integral as a function of gjandc-cp

B | S I K 2| 9| sty

K(xy, %) el o +§ {ﬂ l:(aqj ]0 13 ) %i Jo K
3 ..2 xt x?

K(x;, x9)=1I5+ksp[f lgrad folds' Qx), x)= igrad f,|

Substituting this relationship into the expression for u,, we obtain

u, =A(X|, 12)(0—00)""2 Bj(xl, X2)qj
J

where
A(xy, x )=—’°92Q—ﬁ QdS-lgrad f,l™!
b2 K(x;, x3) 0
of” -1 kO of”
Bi(x), x)=|=—| lgrad foI”' ~————=— - dS
e (a‘li ]o BT X, "2-)H 94; oQ
” ? k2
fr=f ==
Iy
and x; is expressed on S as a function of x; and x,.
Using (2.2), we find that
jijdS
C_c"'_? [ ads ¥
and, finally

[f B;aS
U, = Bj(X], xz)"A(xl’ xz)_ qj
J

Ji Ads

Thus, u, is a linear form in g;, whose coefficients are functions of the coordinates x; and x; of the points
of §.

Substituting the value of u, into expression (2.4) for 8°W, we obtain a quadratic form in the parameters q;-
The requirement that this form be positive definite yields sufficient conditions for the steady motion to be
stable.
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4. EXAMPLE. STABILITY OF THE UNIFORM ROTATION OF A RIGID
BODY WITH A FIXED POINT AND A CAVITY CONTAINING A LIQUID
IN A GRAVITATIONAL FIELD ([1], CHAP. 1V, SEC. 6)

Consider a rigid body with one fixed point O and a cavity containing a liquid in a uniform gravitational field.
We will assume that the x’; axis passes through the body’s centre of gravity.
Using the notation of [1], we obtain

U=-Mg(x,Y| +x:2Y2 +*c3Y3)

I= Ay} +BY3 + Cv] -2Dv,73 - 2BY37, - 2FYi1,
i +v+vi=1

where M is the mass of the system, x; (= 1, 2, 3) are the coordinates of its centre of mass, yis the unit vector along
the upward vertical, and 4, B, C, D, E and F are the moments of inertia of the system about the x; axes and the
centrifugal moments of inertia.

The equations of steady motion are

-l—(l)z—a—l--#-?ﬂ: , i=1,2

2 dy; o
Let us consider the solution
N=12=0, Y3=L x4=x43=0, x3=x3; D=E=0

on the assumption that F = 0, so that x;, x, and x; are the principal axes of inertia of the system in steady motion.
In this case the free surface S of the liquid is a paraboloid of revolution

yzwzxz —8&x3=¢p

where ¢ is a constant which depends on the volume of the liquid.

Let us assume that the projection of the free surface S onto the x,0Ox; plane is a circular annulus of radii R, and
R; (Ry > R,). Calculation of §°W by formula (2.4) produces an expression identical with that obtained previously
[1, p. 208, formula (4.71)].

We now calculate §?W for the transformed rigid body. First

2 pw’x? .
U, =———|c—coy +H( x3+2)(xyY) +x2Y,) + ﬂ x“u,dS (4.1)
‘G Iy

(G=(x? +04g?)%)
Mulltiplying both sides of this equality by x?, integrating with respect to S and noting that, by the symmetry of the rotation
f(@x3 +8)(x 17y + x372)G7'dS =0
we obtain an expression for the integral occurring in (4.1), substitution of which into (4.1) gives
up = Alx), X2)(c—co)—(@%x3+8)(xyY; +X2Y2)/ (0%G)

Taking condition. (2.2) into consideration and again using the symmetry of the rotation, we obtain ¢ - c; = 0 and

2

(0] [of —

u, =-— _x2 _.£+L2 (lel+x272)G 1
2g g ®

We now return to the expression for 5°W.
Together with the expression obtained for u,, we have | [x*u,dS = 0, and after computing the integral (by changing
to polar coordinates in the x,0x;) plane, we obtain Rumyantsev’s original formula [1]

1
5w = '3{[")2 (A-O)+Mgx ¥} +[@2(B-C)+ Mg 3 )+

1 R 0.)2 1 209 2 3
+-é-1tpgj [—T(-z-(n r —co)+l)] r‘dr(yf +‘y%) 4.2)
R LE
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which enables us to analyse the stability of the steady motion.

Following Rumyantsev, let us consider a case in which the angular veloclty of rotation is very large. Then the
free surface § of the liquid in steady motion is a circular cylinder 2 = b?, and after calculations using formula
(2.4) we obtain an expression differing from (4.2) in the integral term, which is now

po? ] x;(xyy +Xz72)u,.ds+%pm2bﬂ ulds

We now calculate 52 for the transformed rigid body.
The calculation of u, is simplified. Defining on §

=bcos®, x, =bsind

and assuming that S cuts the surface of the cavity in circles with centres on the x, axis at points with coordinates
x3 = h * d, we see, proceeding as before, that

U, =—x3(Y cos@+7Y,sin0)

Substitution into the expression 8?W again yields Rumyantsev’s result [1].

5. THE EQUILIBRIUM CASE. EXAMPLE

In the equilibrium case, the computations are much simpler.
The equations of equilibrium are

ol U, .

—+p) —=dt=0, j=12,...,n U;=c

3 ] 3; 2=¢Co
We must set ko = 0 in expression (2.4) for °W and in the formulae of Section 3; then fy = Us(x,, 0), f* = f" =
Ui, ))-

Let us consider Rumyantsev’s example of the equilibrium of a ngld body with one fixed point and a cavity
containing a liquid in a gravitational field.
Consider the solution

V1 =Y2=0, ¥3=k xq=x5=0, x3=x}
Using the expressions
Uy =-gx ==gx¥y +xp¥2 +x3(0-¥} =¥)), Uy =-Migny(1-vF —v])

where M, is the mass of the rigid body and x;; is the height of its centre of gravity in the equilibrium position, we
obtain

1 (-]
82W = g (x1¥y +x2Y2)undS ~ = Migxi3 + pg] xidefcr] +v%>+%pgﬂ ulds

We now evaluate u, and, as before, retrieve Rumyantsev’s result.
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